Abstract

Amyloid aggregation of proteins is usually associated with amyloid diseases. A distinct feature of protein aggregation is the increase of crossed β-sheet structures. Infrared attenuated-total-reflectance (IR-ATR) spectroscopy is a sensitive optical technique that has the potential to provide secondary structure characteristics of proteins even in complex biological samples. In this study we report the analysis of secondary structures of proteins, using the amide I band for the detection and quantification of amyloid fibrils in protein mixtures by use of IR-ATR techniques, at comparatively low sample concentrations. From the experimental results, an analytical model of the relationship between the IR spectra of protein mixtures and the individual mixture components was established using spectral-deconvolution procedures and curve-fitting methods. On the basis of this model, four ratios were shown to provide direct information on amyloid aggregated fibrils via the increase of crossed β-sheet structures in protein-mixture samples. In conclusion, this study confirms the utility of IR spectroscopy for analyzing protein mixtures and for identifying amyloid fibril information within such complex multi-component samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.