Abstract
AbstractWe present a simple and easy-to-understand explanation of ML type inference and parametric polymorphism within the framework of type monomorphism, as in the first order typed lambda calculus. We prove the equivalence of this system with the standard interpretation using type polymorphism, and extend the equivalence to include polymorphic fixpoints. The monomorphic interpretation gives a purely combinatorial understanding of the type inference problem, and is a classic instance of quantifier elimination, as well as an example of Gentzen-style cut elimination in the framework of the Curry-Howard propositions-as-types analogy.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.