Abstract
Performance development in international soccer is undergoing a silent revolution fueled by the rapidly increasing availability of athlete quantification data and advanced analytics. Objective performance data from teams and individual players are increasingly being collected automatically during practices and more recently also in matches after FIFA's 2015 approval of wearables in electronic performance and tracking systems. Some clubs have even started collecting data from players outside of the sport arenas. Further algorithmic analysis of these data might provide vital insights for individual training personalization and injury prevention, and also provide a foundation for evidence-based decisions for team performance improvements. This paper presents our experiences from using a detailed radio-based wearable positioning data system in an elite soccer club. We demonstrate how such a system can detect and find anomalies, trends, and insights vital for individual athletic and soccer team performance development. As an example, during a normal microcycle (6 days) full backs only covered 26% of the sprint distance they covered in the next match. This indicates that practitioners must carefully consider to proximity size and physical work pattern in microcycles to better resemble match performance. We also compare and discuss the accuracy between radio waves and GPS in sampling tracking data. Finally, we present how we are extending the radio-based positional system with a novel soccer analytics annotation system, and a real-time video processing system using a video camera array. This provides a novel toolkit for modern forward-looking soccer coaches that we hope to integrate in future studies.
Highlights
Over the last decade, we have witnessed the emergence of a myriad of wearable devices and sensors for quantification of sport and physical activity
It is believed that the German national soccer team used wearable technology to profile the players, and with these statistics, coach Joachim Low made the crucial substitute of Mario Götze who scored the winning goal in the world cup final in Brazil 2014
To quantify the accuracy difference of GPS technology compared to Local Position Measurement (LPM) systems, we performed two studies, as will be described
Summary
We have witnessed the emergence of a myriad of wearable devices and sensors for quantification of sport and physical activity. Key sport governance organizations like Fédération Internationale de Football Association (FIFA), with its 265 million members in various local clubs world-wide (Kunz, 2007), have already approved use of wearables and Electronic Performance and Tracking Systems (EPTSs) in official matches. This has undoubtedly accelerated research and development of athlete quantification technology. At Alfheim Stadium, there has been a substantial development and use of various tracking technology, including multiple camera semi-automatic systems, Local Position Measurement (LPM) systems, and GPS systems, each capable of quickly recording and storing data about team players. To quantify the accuracy difference of GPS technology compared to LPM systems, we performed two studies, as will be described
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.