Abstract

We establish a quantified overdamped limit for kinetic Vlasov–Fokker–Planck equations with nonlocal interaction forces. We provide explicit bounds on the error between solutions of that kinetic equation and the limiting equation, which is known under the names of aggregation-diffusion equation or McKean–Vlasov equation. Introducing an intermediate system via a coarse-graining map, we quantitatively estimate the error between the spatial densities of the Vlasov–Fokker–Planck equation and the intermediate system in the Wasserstein distance of order 2. We then derive an evolution-variational-like inequality for Wasserstein gradient flows which allows us to quantify the error between the intermediate system and the corresponding limiting equation. Our strategy only requires weak integrability of the interaction potentials, thus in particular it includes the quantified overdamped limit of the kinetic Vlasov–Poisson–Fokker–Planck system to the aggregation-diffusion equation with either repulsive electrostatic or attractive gravitational interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.