Abstract

Different types of immobilized free radicals as well as immobilized paramagnetic gadolinium(III) complexes were synthesized and used as relaxation agents to shorten the spin−lattice relaxation times T1 of analytes in quantitative continuous-flow 13C nuclear magnetic resonance spectroscopy (NMR). The immobilized paramagnetic relaxation agents were characterized with electron paramagnetic resonance spectroscopy (EPR) and extended X-ray absorption fine structure spectroscopy (EXAFS). With these types of paramagnetic relaxation agents, it was possible to obtain a 4-fold increase in signal-to-noise ratio per unit time, and an almost quantitative NMR spectra in continuous-flow 13C NMR spectroscopy could be acquired with this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.