Abstract
Breast cancer is the most common cancer in women and the second leading cause of cancer death. It is well known that breast density is an important risk factor for breast cancer and also can be used to personalize screening and for assessment of treatment response. Breast density has previously been correlated to volumetric water density. The purpose of this study is to validate the accuracy and precision of dual-energy mammography in measuring water density in postmortem breasts. Twenty pairs of postmortem breasts were imaged using dual-energy mammography with energy-sensitive photon-counting detectors. Chemical analysis was used as the reference standard to assess the accuracy of dual-energy mammography in measuring volumetric water and lipid density. Images from different views and contralateral breasts were used to assess estimate of precision for water and lipid volumetric density measurements. The measured volumetric water and lipid density from dual-energy mammography and chemical analysis were in good agreement, where the standard errors of estimates (SEE) of both were calculated to be 2.1%. Volumetric water and lipid density measurements from different views were also in good agreement, with a SEE of 1.3% and 1.1%, respectively. The results indicate that dual-energy mammography can be used to accurately measure volumetric water and lipid density in breast tissue. Accurate quantification of volumetric water density is expected to enhance its utility as a risk factor for breast cancer and for assessment of response to therapy. • Dual-energy mammography can be used to accurately measure water and lipid volumetric density in breast tissue. • Improved quantification of volumetric water density is expected to enhance its utility for assessment of response to therapy and as a risk factor for breast cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.