Abstract

Urinary vanillylmandelic acid (VMA) and homovanillic acid (HVA) are biomarkers for the diagnosis and follow-up of neuroblastoma, whereas urinary 5-hydroxyindoleacetic acid (5-HIAA) is used to assess a carcinoid tumor. These analytes are conventionally analyzed in a single run by chromatography (LC) coupled with electrochemical detection (LC-ECD) using commercial kits. A rapid dilute-and-shoot LC tandem mass spectrometry (LC-MS/MS) assay was validated in order to replace the LC-ECD method and therefore improve analytical specificity and throughput. Sample preparation was carried out by dilution of the urine sample with a solution containing the deuterated internal standards. The separation was achieved on an ultra-high pressure LC system with MS detection using a triple quadrupole mass spectrometer. The method was validated according to the current EMA and FDA guidelines. The full chromatographic run was achieved in 8 min. The method validation showed excellent linearity (r2>0.999 for all three analytes), precision (CV <15%), negligible matrix effect (recoveries >90%), low carryover (<1%) and LLOQ of 0.25, 0.4 and 0.4 μM for VMA, HVA and 5-HIAA, respectively. Deming fits and Bland-Altman analyses showed no significant differences between the values obtained between the two assays. The LC-MS/MS method proposed in this study is fast and robust, and the simple sample preparation saves time and avoids the additional costs of dedicated kits used for the LC-ECD assays by switching to LC-MS/MS. Additionally, the near-perfect correlation observed herein between both assays allows the previously established reference ranges to be maintained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.