Abstract

A lesion-specific enzyme-induced DNA strand break assay was developed for an oligonucleotide chip for the determination of UVB-induced cyclobutane pyrimidine dimers (CPDs). A 20-mer of fluorophore-labeled and biotinylated oligonucleotide was immobilized on the chip. CPDs in DNA on the chip were formed by UVB irradiation (312 nm). T4 endonuclease V (T4N5) was used to excise the CPD site as T4N5 sensitively and specifically detects CPDs. The fluorophore-labeled DNA fragments were detected by a laser-induced fluorescence (LIF) detection system. The number of CPDs induced by UVB was determined based on a mathematical equation obtained from a predetermined calibration curve. The yield of UVB-induced CPDs was 1.73 CPDs per megabase per (kJ/m(2)). The reliability of this value was proved by its similarity to reference values obtained from gel electrophoresis. The developed assay has strong potential to quantify most kinds of UV-induced DNA lesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.