Abstract

A quantification model which uses standard X-ray spectra collected from bulk materials to determine the composition and mass thickness of single-layer and multilayer unsupported thin films is presented. The multivariate model can be iteratively solved for single layers in which each element produces at least one visible characteristic X-ray line. The model can be extended to multilayer thin films in which each element is associated with only one layer. The model may sometimes be solved when an element is present in multiple layers if additional information is added in the form of independent k-ratios or model assumptions. While the algorithm is suitable for any measured k-ratios, it is particularly well suited to energy-dispersive X-ray spectrometry where the bulk standard spectra can be used to deconvolve peak interferences in the thin-film spectra. The algorithm has been implemented and made available in the Open Source application National Institute of Standards and Technology DTSA-II. We present experimental data and Monte Carlo simulations supporting the quantification model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call