Abstract

The primary focus of this paper is to demonstrate an efficient approach for uncertainty quantification of surface heat flux to the spherical non-ablating heat-shield of a generic reentry vehicle due to epistemic and aleatory uncertainties that may exist in various parameters used in the numerical solution of hypersonic, viscous, laminar blunt-body flows with thermo-chemical non-equilibrium. Two main uncertainty sources were treated in the computational fluid dynamics (CFD) simulations: (1) aleatory uncertainty in the freestream velocity and (2) epistemic uncertainty in the recombination efficiency for a partially catalytic wall boundary condition. The Second-Order Probability utilizing a stochastic response surface obtained with Point-Collocation Non-Intrusive Polynomial Chaos was used for the propagation of mixed (aleatory and epistemic) uncertainties. The uncertainty quantification approach was validated on a stochastic model problem with mixed uncertainties for the prediction of stagnation point heat transfer with Fay-Riddell relation, which included the comparison with direct Monte Carlo sampling results. In the stochastic CFD problem, the uncertainty in surface heat transfer was obtained in terms of intervals at different probability levels at various locations including the stagnation point and the shoulder region. The mixed uncertainty results were compared to the results obtained with a purely aleatory uncertainty analysis to show the difference between two uncertainty quantification approaches. A global sensitivity analysis indicated that the velocity has a stronger contribution to the overall uncertainty in the stagnation point heat transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call