Abstract
Gamma Knife radiosurgery (GKRS) is a common treatment modality for vestibular schwannoma (VS). The ability to predict treatment response is important in patient counseling and decision-making. The authors developed an algorithm that can automatically segment and differentiate cystic and solid tumor components of VS. They also investigated associations between the quantified radiological features of each component and tumor response after GKRS. This is a retrospective study comprising 323 patients with VS treated with GKRS. After preprocessing and generation of pretreatment T2-weighted (T2W)/T1-weighted with contrast (T1WC) images, the authors segmented VSs into cystic and solid components by using fuzzy C-means clustering. Quantitative radiological features of the entire tumor and its cystic and solid components were extracted. Linear regression models were implemented to correlate clinical variables and radiological features with the specific growth rate (SGR) of VS after GKRS. A multivariable linear regression model of radiological features of the entire tumor demonstrated that a higher tumor mean signal intensity (SI) on T2W/T1WC images (p < 0.001) was associated with a lower SGR after GKRS. Similarly, a multivariable linear regression model using radiological features of cystic and solid tumor components demonstrated that a higher solid component mean SI (p = 0.039) and a higher cystic component mean SI (p = 0.004) on T2W/T1WC images were associated with a lower SGR after GKRS. A larger cystic component proportion (p = 0.085) was associated with a trend toward a lower SGR after GKRS. Radiological features of VSs on pretreatment MRI that were quantified using fuzzy C-means were associated with tumor response after GKRS. Tumors with a higher tumor mean SI, a higher solid component mean SI, and a higher cystic component mean SI on T2W/T1WC images were more likely to regress in volume after GKRS. Those with a larger cystic component proportion also trended toward regression after GKRS. Further refinement of the algorithm may allow direct prediction of tumor response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.