Abstract

Digital pathology has the potential to quantify tumor markers accurately and reproducibly with various cellular and subcellular localizations in tissues, thus filling a need in cancer research. As a case study, we quantified the percentage of necrosis, microvessels density, and monocarboxylate transporter 4 (MCT4) expression in two ovarian cancer patient-derived xenograft (PDX) models subcutaneously injected in NOD/SCID mice. PDX models were treated with bevacizumab, an antiangiogenic drug, that targets vascular endothelial growth factor A (VEGF-A). Specific signal analysis algorithms allowed us to study morphologic, vascular, and metabolic modifications induced by antiangiogenic therapy by a quantitative, reproducible, and reliable approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.