Abstract

Genomic safe harbors (GSH) are defined as sites in the host genome that allow stable expression of inserted transgenes while having no adverse effects on the host cell, making them ideal for use in basic research and therapeutic applications. Silencing and fluctuations in transgene expression would be highly undesirable effects. We have previously shown that transgene expression in Jurkat T cells is not silenced for up to 160 days after CRISPR-Cas9-mediated insertion of reporter genes into the adeno-associated virus site 1 (AAVS1), a commonly used GSH. Here, we studied fluctuations in transgene expression upon targeted insertion into the GSH AAVS1. We have developed an efficient method to generate and validate highly complex barcoded plasmid libraries to study transgene expression on the single-cell level. Its applicability is demonstrated by inserting the barcoded transgene Cerulean into the AAVS1 locus in Jurkat T cells via the CRISPR-Cas9 technology followed by next-generation sequencing of the transcribed barcodes. We observed large transcriptional variations over two logs for transgene expression in the GSH AAVS1. This barcoded transgene insertion model is a powerful tool to investigate fluctuations in transgene expression at any GSH site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call