Abstract
Acetoacetate (AcAc) and D-beta-hydroxybutyrate (D-βOHB), the two major ketone bodies found in circulation, are linked to multiple physiological and pathophysiological states. Therefore, analytical methodologies surrounding the quantification of total ketone body (TKB) concentrations in biological matrices are paramount. Traditional methods to quantify TKBs relied on indirect spectrophotometric assays with narrow dynamic ranges, which have been significantly improved upon by modern mass spectrometry (MS)-based approaches. However, the lack of stable isotope-labeled internal standards (ISs) for AcAc and the need to distinguish D-βOHB from its closely related structural and enantiomeric isomers pose significant obstacles. Here, we provide a protocol to synthesize and quantify a [13C] stable isotope-labeled IS for AcAc, which, in conjunction with a commercially available [2H] stable isotope-labeled IS for βOHB, allows TKBs to be measured across multiple biological matrices. This rapid (7min) analysis employs reverse phase ultra-high performance liquid chromatography (RP-UHPLC) coupled to tandem MS (MS/MS) to distinguish βOHB from three structural isomers using parallel reaction monitoring (PRM), providing excellent specificity and selectivity. Finally, a method is provided that distinguishes D-βOHB from L-βOHB using a simple one-step derivatization to produce the corresponding diastereomers, which can be chromatographically resolved using the same rapid RP-UHPLC separation with new PRM transitions. In summary, this method provides a rigorous analytical pipeline for the analysis of TKBs in biological matrices via leveraging two authentic stable isotope-labeled ISs and RP-UHPLC-MS/MS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.