Abstract

BackgroundThree-dimensional joint kinematics during canine locomotion are commonly measured using skin marker-based stereophotogrammetry technologies. However, marker-related errors caused by the displacement of the skin surface relative to the underlying bones (i.e., soft tissue artifacts, STA) may affect the accuracy of the measurements and obscure clinically relevant information. Few studies have assessed STA in canine limbs during kinematic analysis. The magnitudes and patterns of the STA and their influence on kinematic analysis remain unclear. Therefore, the current study aims to quantify the in vivo STA of skin markers on the canine thigh and crus during passive joint motion. The stifle joints of ten dogs were passively extended while the skin markers were measured using a motion capture system, and skeletal kinematics were determined using a CT-to-fluoroscopic image registration method.ResultsThe skin markers exhibited considerable STA relative to the underlying bones, with a peak amplitude of 27.4 mm for thigh markers and 28.7 mm for crus markers; however, the amplitudes and displacement directions at different attachment sites were inconsistent. The markers on the cranial thigh and lateral crus closer to the stifle joint had greater STA amplitudes in comparison to those of other markers. Most markers had STA with linear and quadratic patterns against the stifle flexion angles. These STA resulted in underestimated flexion angles but overestimated adduction and internal rotation when the stifle was flexed to greater than 90°.ConclusionsMarker displacements relative to the underlying bones were prominent in the cranial aspect of the thigh and the proximal-lateral aspect of the crus. The calculated stifle kinematic variables were also affected by the STA. These findings can provide a reference for marker selection in canine motion analysis for similar motion tasks and clarify the relationship between STA patterns and stifle kinematics; the results may therefore contribute to the development of STA models and compensation techniques for canine motion analysis.

Highlights

  • Three-dimensional joint kinematics during canine locomotion are commonly measured using skin marker-based stereophotogrammetry technologies

  • Joint rotations are the primary cause of soft tissue artifacts (STA) in kinematics-driven STA models [16]; this implies that a knowledge of the relationships between STA and adjacent joint angles will facilitate the development of artifact compensation techniques and improve the estimation of segmental kinematics using skin markers

  • Eight markers were placed on bony landmarks: the greater trochanter (GT), lateral femoral epicondyle (LFC), medial femoral epicondyle (MFC), fibular head (FH), proximal tibial crest (PTC), distal tibial crest (DTC), lateral malleolus (LM), and medial malleolus (MM)

Read more

Summary

Introduction

Three-dimensional joint kinematics during canine locomotion are commonly measured using skin marker-based stereophotogrammetry technologies. The amplitudes and patterns of STA displacements have been widely studied for human lower limbs [10], as have their cumulative effects on the calculated mechanical variables [11,12,13]. In this context, STA amplitudes are inconsistent among different marker locations [14], motion tasks [10], and subjects’ body characteristics [11] and are affected by several factors associated with stable. Joint rotations are the primary cause of STA in kinematics-driven STA models [16]; this implies that a knowledge of the relationships between STA and adjacent joint angles will facilitate the development of artifact compensation techniques and improve the estimation of segmental kinematics using skin markers

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.