Abstract

AbstractInjecting volcanic gas into the air leads to an increase in carbon dioxide (CO2) levels compared with background concentrations and may establish gas hazard conditions. This study reports the results of five stable isotope (i.e., δ13C‐CO2 and δ18O‐CO2) surveys of airborne CO2 on Vulcano from August 2020 to November 2021. To measure CO2 in the air, a mobile laboratory was equipped with a laser‐based spectrophotometer that can selectively detect different CO2 isotopologues. Volcanic CO2 has a different isotopic signature than atmospheric CO2 and both δ13C‐CO2 and δ18O‐CO2 can help trace the injections of volcanic gases into the air. An isotopic mass balance model was developed for partitions CO2 between atmospheric background and volcanic CO2. The results of these studies show that volcanic CO2 emissions and atmospheric circulation deeply affected the concentration of CO2 in the air at Vulcano Porto. Studies of δ13C‐CO2 and δ18O‐CO2 provide an estimate of volcanic CO2 in the air. These results help identify spatially some points of interest for mitigating volcanic gas emission‐related hazards on Vulcano.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.