Abstract

To elucidate how a functional disulphide bond controls protein activity, it is critical that the redox state of the bond in the population of protein molecules is known. A differential cysteine alkylation and mass spectrometry technique is described that affords precise quantification of protein disulphide bond redox state. The utility of the technique is demonstrated by quantifying the redox state of 31 of the 37 disulphide bonds in human αIIbβ3 integrin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.