Abstract

Quantifying the real plasmonic field strength experimentally has been long pursued in expanding the applications related to plasmonic enhancement. However, it is still an enormous challenge to determine the inhomogeneous plasmonic field distribution. Here, self-assembled monolayers (SAMs) of 4-mercaptobenzonitrile (MBN) are sandwiched as a gap spacer in a nanoparticle-on-mirror (NPoM) structure, effectively forming ultrahigh field enhancement to observe Stark shifts of the chemical bond. Transverse position-dependent Stark shifts of ν(C═C) and ν(C≡N) in the individual nanocavity measured by surface-enhanced Raman scattering (SERS) experiment combined with the Stark tuning rate by density functional theory (DFT) simulation accurately revealed the inhomogeneous plasmonic field transverse distribution and quantified the transverse plasmonic field strength up to ∼1.9 × 109 V/m, which matches the value predicted by finite element method (FEM) simulation. This work deepens the insight into plasmon-based technologies and will coordinate high-resolution techniques such as tip-enhanced Raman spectroscopy (TESR) to reveal the real plasmonic field distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.