Abstract

Reliable quantification of the optical properties of fluorescent quantum dots (QDs) is critical for their photochemical, -physical, and -biological applications. Presented herein is the experimental quantification of photon scattering, absorption, and on-resonance-fluorescence (ORF) activities of CdSe/CdS core/shell fluorescent QDs as a function of the shell sizes and geometries. Four spherical QDs (SQDs) with different diameters and four rod-like QDs (RQDs) with different aspect ratios (ARs) have been analyzed using UV-vis, fluorescence, and the recent polarized resonance synchronous spectroscopic (PRS2) methods. All quantum dots are simultaneous absorbers and scatterers in the UV-vis wavelength region, and they all exhibit strong ORF emission in the wavelength regions where the QDs both absorb and emit. The absorption and scattering cross-sections of the CdS shell are linearly and quadratically, respectively, proportional to the shell volume for both the SQDs and RQDs. However, the effects of CdS shell coating on the core optical properties are different between SQDs and RQDs. For RQDs, increasing the CdS shell volume through the length elongation has no effect on either the peak wavelength or intensity of the CdSe core UV-vis absorption and ORF, but it reduces the QD fluorescence depolarization. In contrast, increasing CdS shell volume in the SQDs induces red-shift in the CdSe core peak UV-vis absorption and ORF wavelengths, and increases their peak cross-sections, but it has no effect on the SQD fluorescence depolarization. The RQD ORF cross-sections and quantum yields are significantly higher than their respective counterparts for the SQDs with similar particle sizes (volumes). While these new insights should be significant for the QD design, characterization, and applications, the methodology presented in this work is directly applicable for quantifying the optical activities of optically complex materials where the common UV-vis spectrometry and fluorescence spectroscopy are inadequate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call