Abstract

Eruca (Eruca sativa; Brassicaceae) is an important industrial crop due to its ability to grow under a wide range of climatic conditions and in poor fertility lands and also for the quality of seed oil and protein. Seed germination (SG) is an important event in plant’s life history which can significantly be influenced by several environmental factors such as temperature (T), water potential (ψ), salinity, pH, and burial depth. Therefore, this study aimed (i) to investigate the effects of these environmental factors on SG behavior of Eruca using several mathematical models, (ii) to determine the cardinal Ts and tolerance threshold value for each trait (i.e., 50% reduction than its maximum value) affected by the environmental factor, and (iii) to quantify the response of Eruca seedling growth to each environmental factor. The results indicated that Eruca SG and seedling growth were significantly influenced by these factors (P < 0.05). The estimated cardinal Ts were 1 °C for the base T, 30 °C for the optimum T, and 40.8 °C for the ceiling T. The salt and drought tolerance threshold values were 257 mM NaCl and − 1.2 MPa for SG and 247 mM NaCl and − 1 MPa for the seedling growth, respectively, suggesting that the seedling growth was more sensitive than SG under both salt and drought stresses in Eruca. In addition, the maximum SG and seedling growth were observed at pH 7 and burial depth 1.9 cm. In general, the models used in this study could describe well the response of Eruca SG under different levels of environmental factors and also their parameters could easily be used in Eruca SG simulation models. This information also could help us to better manage the production of this plant under stressful conditions and/or to determine its geographic range expansion in the world.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call