Abstract

Perennial landslide dams interrupt the sediment connectivity of rivers. Although most landslide dams do not persist for more than a few days, those that do can exhibit significant sediment trapping capacity. While water can pass through or over the dam, the sediment load is trapped upstream of the dam until the dam breaks or gradually erodes, or is completely filled with deposits. The volume of sediment stored in this way can reach up to three times the volume of impounded water, as we find by back-analyzing the lake Hintersee in southeastern Germany. In this work, we reconstruct the pre-landslide topography using Petrel and then use the Gerris shallow-water flow solver with a Voellmy rheology to back-analyze this landslide-dammed lake in the Bavarian Alps. We test several landslide release scenarios and different landslide rheologies to obtain the best-fitting reconstruction of the dam topography. We then fill the landslide dam with water and sediment using simple slope algorithms and validate the results against the current topography. Finally, we compare the landslide deposit thicknesses, water depths, and trapped sediment thicknesses of our different scenarios in order to provide new insight into the damming and sediment trapping capacity of landslides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call