Abstract

Most animals establish long-term symbiotic associations with bacteria that are critical for normal host physiology. The symbiosis that forms between the Hawaiian squid Euprymna scolopes and the bioluminescent bacterium Vibrio fischeri serves as an important model system for investigating the molecular mechanisms that promote animal-bacterial symbioses. E. scolopes hatch from their eggs uncolonized, which has led to the development of squid-colonization assays that are based on introducing culture-grown V. fischeri cells to freshly hatched juvenile squid. Recent studies have revealed that strains often exhibit large differences in how they establish symbiosis. Therefore, we sought to develop a simplified and reproducible protocol that permits researchers to determine appropriate inoculum levels and provides a platform to standardize the assay across different laboratories. In our protocol, we adapt a method commonly used for evaluating the infectivity of pathogens to quantify the symbiotic capacity of V. fischeri strains. The resulting metric, the symbiotic dose-50 (SD50), estimates the inoculum level that is necessary for a specific V. fischeri strain to establish a light-emitting symbiosis. Relative to other protocols, our method requires 2-5-fold fewer animals. Furthermore, the power analysis presented here suggests that the protocol can detect up to a 3-fold change in the SD50 between different strains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.