Abstract
The Barkhausen noise (BN) method has long been applied to measure the bulk magnetic properties of magnetic materials. Recently, this important nondestructive testing (NDT) method has been applied to evaluate microstructure, stress distribution analysis, fatigue, creep and fracture characteristics. Until now the BN method has been used only qualitatively in evaluating the variation of BN with variations in material properties. For this reason, few NDT methods have been applied in industrial plants and laboratories. The present investigation studied the coercive force and BN while varying the microstructure of ultrafine-grained steels and SA508 cl.3 steels. This variation was carried out according to the second heat-treatment condition with rolling of ultrafine-grained steels and the simulated time-dependent degradation of SA 508 cl.3 steels. An attempt was also made to quantify BN from the relationship between the velocity of magnetic domain walls and the retarding force, using the coercive force of the domain wall movement. The microstructure variation was analyzed according to time-dependent degradation. Fracture toughness was evaluated quantitatively by measuring the BN from two intermediary parameters; grain size and distribution of nonmagnetic particles. From these measurements, the variation of microstructure and fracture toughness can be directly evaluated by the BN method as an accurate in situ NDT method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.