Abstract

High throughput analyses in biochemical assays are gaining popularity in the post-genomic era. Multiple label-free detection methods are especially of interest, as they allow quantitative monitoring of biomolecular interactions. It is assumed that the sensor surface is stable to the surrounding medium while the biochemical processes are taking place. Using the Interferometric Reflectance Imaging Sensor (IRIS), we found that buffers commonly used in biochemical reactions can remove silicon dioxide, a material frequently used as the solid support in the microarray industry. Here, we report 53pm to 731pm etching of the surface silicon oxide over a 12-h period for several different buffers, including various concentrations of SSC, SSPE, PBS, TRIS, MES, sodium phosphate, and potassium phosphate buffers, and found that PBS and MES buffers are much more benign than the others. We observe a linear dependence of the etch depth over time, and we find the etch rate of silicon dioxide in different buffers that ranges from 2.73±0.76pm/h in 1M NaCl to 43.54±2.95pm/h in 6×SSC. The protective effects by chemical modifications of the surface are explored. We demonstrate unaccounted glass etching leading to erroneous results with label-free detection of DNA microarrays, and offer remedies to increase the accuracy of quantitative analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.