Abstract

To show the feasibility of using magnetic resonance imaging (MRI) to quantify superparamagnetic iron oxide (SPIO)-labeled cells. Lymphocytes and 9L rat gliosarcoma cells were labeled with ferumoxides-protamine sulfate complex (FE-PRO). The cells were labeled efficiently (more than 95%) and the iron concentration inside each cell was measured by spectrophotometry (4.77-30.21 pg). Phantom tubes containing different numbers of labeled or unlabeled cells, as well as different concentrations of FE-PRO, were made. In addition, labeled and unlabeled cells were injected into fresh and fixed rat brains. Cellular viability and proliferation of labeled and unlabeled cells were shown to be similar. T2-weighted images were acquired using 7T and 3T MRI systems, and R2 maps of the tubes containing cells, free FE-PRO, and brains were made. There was a strong linear correlation between R2 values and labeled cell numbers, but the regression lines were different for the lymphocytes and gliosarcoma cells. Similarly, there was strong correlation between R2 values and free iron. However, free iron had higher R2 values than the labeled cells for the same concentration of iron. Our data indicate that in vivo quantification of labeled cells can be done by careful consideration of different factors and specific control groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call