Abstract
This paper details a procedure to determine lower bounds on the size of representative volume elements (RVEs) by which the size of the RVE can be quantified objectively for random heterogeneous materials. Here, attention is focused on granular materials with various distributions of inclusion size and volume fraction of inclusions. An extensive analysis of the RVE size dependence on the various parameters is performed. Both deterministic and stochastic parameters are analysed. Also, the effects of loading mode and the parameter of interest are studied. As the RVE size is a function of the material, some material properties such as Young's modulus and Poisson's ratio are analysed as factors that influence the RVE size. The lower bound of RVE size is found as a function of the stochastically distributed volume fraction of inclusions; thus the stochastic stability of the obtained results is assessed. To this end a newly defined concept of stochastic stability (DH-stability) is introduced by which stochastic effects can be included in the stability considerations. DH-stability can be seen as an extension of classical Lyapunov stability. As is shown, DH-stability provides an objective tool to establish the lower bound nature of RVEs for fluctuations in stochastic parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.