Abstract

The derivation and application of a statistical mechanical model to quantify stereochemical communication in metal–organic assemblies is reported. The factors affecting the stereochemical communication within and between the metal stereocenters of the assemblies were experimentally studied by optical spectroscopy and analyzed in terms of a free energy penalty per “incorrect” amine enantiomer incorporated, and a free energy of coupling between stereocenters. These intra‐ and inter‐vertex coupling constants are used to track the degree of stereochemical communication across a range of metal–organic assemblies (employing different ligands, peripheral amines, and metals); temperature‐dependent equilibria between diastereomeric cages are also quantified. The model thus provides a unified understanding of the factors that shape the chirotopic void spaces enclosed by metal–organic container molecules.

Highlights

  • The derivation and application of a statistical mechanical model to quantify stereochemical communication in metal–organic assemblies is reported

  • The factors affecting the stereochemical communication within and between the metal stereocenters of the assemblies were experimentally studied by optical spectroscopy and analyzed in terms of a free energy penalty per “incorrect” amine enantiomer incorporated, and a free energy of coupling between stereocenters

  • These intra- and inter-vertex coupling constants are used to track the degree of stereochemical communication across a range of metal–organic assemblies; temperature-dependent equilibria between diastereomeric cages are quantified

Read more

Summary

Introduction

The derivation and application of a statistical mechanical model to quantify stereochemical communication in metal–organic assemblies is reported. These intra- and inter-vertex coupling constants are used to track the degree of stereochemical communication across a range of metal–organic assemblies (employing different ligands, peripheral amines, and metals); temperature-dependent equilibria between diastereomeric cages are quantified.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.