Abstract

A trap‐corrected bias–temperature–stress (TraC‐BTS) method to quantify the kinetics of ion migration in dielectrics based on capacitance–voltage measurements is presented. The method is based on the extraction of flatband potential (Vfb) shifts in metal–insulator–semiconductor test structures an enables the reliability assessment of semiconductor dielectrics and solar cells. Herein, it is shown that carrier trapping in the dielectric must be accounted for, as it strongly affects the measurement of flatband potential in silicon‐nitride‐based capacitors. This effect is corrected by isolating the contribution of trapping on Vfb using contamination‐free control devices. A specific drift‐diffusion model of the ion kinetics presented herein allows the extraction of ion diffusivity. An Arrhenius relationship is obtained for sodium diffusivity in silicon nitride in a temperature range from 30 °C to 90 °C at an electric field of 1 MV cm−1, yielding a prefactor and an activation energy , with a 95% confidence interval of [] eV for the diffusivity. These quantitative kinetics confirm that silicon nitride may be a poor sodium migration barrier under a significant electric field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call