Abstract

Quantification of nanoparticle uptake into cells is necessary for numerous applications in cellular imaging and therapy. Herein, synchrotron X-ray fluorescence (SXRF) microscopy, a promising tool to quantify elements in plant and animal cells, was employed to quantify and characterize the distribution of titanium dioxide (TiO2) nanosphere uptake in a population of single cells. These results were compared with average nanoparticle concentrations per cell obtained by widely used inductively coupled plasma mass spectrometry (ICP-MS). The results show that nanoparticle concentrations per cell quantified by SXRF were of one to two orders of magnitude greater compared with ICP-MS. The SXRF results also indicate a Gaussian distribution of the nanoparticle concentration per cell. The results suggest that issues relevant to the field of single-cell analysis, the limitation of methods to determine physical parameters from large population averages leading to potentially misleading information and the lack of any information about the cellular heterogeneity are equally relevant for quantification of nanoparticles in cell populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call