Abstract
Active organisms modify the substratum in which they dwell. This process, called “bioturbation”, affects the way that biogeochemical fluxes are mediated at the substratum–water interface. In the frame of this work, the bioturbation potential of the Asiatic clam Corbicula fluminea was characterized and quantified. We measured the displacement of fluorescent particles by C. fluminea burying in a size-based experimental design in order to explore the effects of body-size on sediment reworking. Our results stress that C. fluminea belongs to the functional group of biodiffusors, and that C. fluminea can be considered as an intermediate sediment reworker. We suggest that bioturbation was mainly induced by the pedal-feeding activity of the clams. Results also showed that, though large clams induced displacement of particles deeper into the sediment, small clams showed the highest net sediment reworking activity. This result was in contrast to the initial hypothesis of biovolume as the main driver for particle displacement by bioturbating organisms. Life-history traits and specific features of pedal-feeding could explain the observed pattern.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.