Abstract

AbstractIn this study, a new index based on the potential vorticity (PV) framework is proposed for the quantification of the Tibetan Plateau (TP) surface thermodynamic and dynamic forcing. The results show that the derived TP surface PV (SPV) includes the topographical effect, near‐surface absolute vorticity, and land–air potential temperature differences. The climatological annual cycle of the SPV suggests that the TP transitions from a cooling to a heating source in April. The SPV reaches a maximum from June to August, which is consistent with the evolution of the Asian summer monsoon precipitation. Further analysis suggests that the intensified SPV in the boreal summer results in a low‐level cyclonic circulation anomaly associated with increased precipitation over the southeastern slope of the TP and South China and decreased precipitation over the Indian Ocean. In winter, the intensified SPV is associated with local cold air and divergence at the TP surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call