Abstract

Understanding the relationship between root systems, soil macropore networks, and soil hydraulic properties is important to better assess ecosystem health. In this study, treatments were performed in forested wetland soils with different vegetation densities, i.e., large (LWa) and small communities (LWb) of reed (Phragmites australis (Cav.) Trin. ex Steud.). At each plot, three undisturbed PVC cylinders (10 cm in diameter and 50 cm in height) were obtained, and X-ray microtomography (μCT) scanning was used to determine the root and macropore architectures. Results showed that the values of total root length and total root volume at LWa were significantly larger than those at LWb (p < 0.05). Imaged macroporosity, macropore volume, macropore length density, macropore node density, macropore branch density, mean macropore surface area, mean macropore diameter, and mean macropore volume at LWa were significantly larger than those at LWb (p < 0.05), whereas mean macropore length, mean macropore branch length, and mean macropore tortuosity at LWb were larger than those at LWa. Total root length and total root volume were positively correlated with soil saturated hydraulic conductivity. Imaged macroporosity, macropore volume, macropore length density, macropore node density, macropore branch density, mean macropore surface area, mean macropore diameter, and mean macropore volume were positively correlated with soil saturated hydraulic conductivity, whereas mean macropore length, mean macropore branch length, and mean macropore tortuosity were negatively correlated with soil saturated hydraulic conductivity. In conclusion, root systems and soil macropore networks constitute a complex synthesis inside soil environments, and together affect soil hydrological responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call