Abstract
Total phosphorus (T-P) refers to the concentration of phosphorus in water and is one of the important parameters for eutrophication in lakes and rivers. In current research, neuroscience dependent (i.e., singular and double-platform synthetic) approaches were employed to predict the river T-P concentration. Singular techniques were developed utilizing machine learning based (support vector machines (SVMs), stochastic gradient boosting (SGB)), and deep learning based multilayer perceptron (DMLP) models. Besides, double-platform synthetic techniques were developed by integrating a prior data-processing (Discrete-wavelet) algorithm with the singular techniques. Six input scenarios conditional on different water quantity and quality parameters acquired from two stations (Hwangji and Toilchun), South Korea, were employed for appraising singular and double-platform synthetic techniques. The various promoted models were evaluated using four statistical standards viz., mean absolute error (MAE), root mean square error (RMSE), scatter index (SI), and Pearson correlation coefficient (CCp), and four visual references viz., scatter diagram, box-and-whisker plot, violin plot, and Taylor diagram. It can be indicated from the outcomes that the double-platform synthetic techniques did not always lead to more accurate predictions than the singular techniques. Further, results also supplied that the SGB with the 6th input (MAE = 0.012 mg/L, RMSE = 0.014 mg/L, and CCp = 0.650 for Hwangji; MAE = 0.011 mg/L, RMSE = 0.017 mg/L, and CCp = 0.963 for Toilchun) scenario model demonstrated the best accuracy for predicting river T-P concentration by the singular techniques for both stations, whereas the discrete-wavelet SVMs with the 4th input (MAE = 0.007 mg/L, RMSE = 0.011 mg/L, and CCp = 0.765 for Hwangji) and discrete-wavelet SGB with the 5th input (MAE = 0.012 mg/L, RMSE = 0.017 mg/L, and CCp = 0.953 for Toilchun) scenario models provided the best predictive accuracy among double-platform synthetic techniques, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.