Abstract

BackgroundReal-time myocardial contrast echocardiography (MCE) is a novel method for assessing myocardial perfusion. The aim of this study was to evaluate the feasibility of a very low-power real-time MCE for quantification of regional resting myocardial blood flow (MBF) velocity in normal human myocardium.MethodsTwenty study subjects with normal left ventricular (LV) wall motion and normal coronary arteries, underwent low-power real-time MCE based on color-coded pulse inversion Doppler. Standard apical LV views were acquired during constant IV. infusion of SonoVue®. Following transient microbubble destruction, the contrast replenishment rate (β), reflecting MBF velocity, was derived by plotting signal intensity vs. time and fitting data to the exponential function; y (t) =A (1-e-β(t-t0)) + C.ResultsQuantification was feasible in 82%, 49% and 63% of four-chamber, two-chamber and apical long-axis view segments, respectively. The LAD (left anterior descending artery) and RCA (right coronary artery) territories could potentially be evaluated in most, but contrast detection in the LCx (left circumflex artery) bed was poor. Depending on localisation and which frames to be analysed, mean values of were 0.21–0.69 s-1, with higher values in medial than lateral, and in basal compared to apical regions of scan plane (p = 0.03 and p < 0.01). Higher β-values were obtained from end-diastole than end-systole (p < 0.001), values from all-frames analysis lying between.ConclusionLow-power real-time MCE did have the potential to give contrast enhancement for quantification of resting regional MBF velocity. However, the technique is difficult and subjected to several limitations. Significant variability in β suggests that this parameter is best suited for with-in patient changes, comparing values of stress studies to baseline.

Highlights

  • Real-time myocardial contrast echocardiography (MCE) is a novel method for assessing myocardial perfusion

  • Despite recent advances in contrast-specific imaging, our study demonstrates some of the difficulties with and the still limited ability of low-power real-time MCE for quantitative assessment of regional myocardial perfusion

  • Our study indicated that a very low-power real-time MCE could provide contrast opacification in multiple myocardial segments of the left ventricular (LV) apical views

Read more

Summary

Introduction

Real-time myocardial contrast echocardiography (MCE) is a novel method for assessing myocardial perfusion. The aim of this study was to evaluate the feasibility of a very low-power real-time MCE for quantification of regional resting myocardial blood flow (MBF) velocity in normal human myocardium. From the time course of video intensity during progressively prolonged pulsing intervals, both MBF velocity and myocardial blood volume (MBV) could be assessed. The product of these two parameters was shown to correlate well with radiolabeled microsphere-derived MBF [5,17,19,20]. This quantitative approach has been applied to real-time MCE techniques [14,15,16,19]. Steady state SI has not been found to correlate as well with flow measurements [14,17], indicating that the microbubble replenishment rate might be the major MCE perfusion parameter

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call