Abstract

BackgroundSpontaneous breathing (SB) effort during mechanical ventilation (MV) is an important metric of respiratory drive. However, SB effort varies due to a variety of factors, including evolving pathology and sedation levels. Therefore, assessment of SB efforts needs to be continuous and non-invasive. This is important to prevent both over- and under-assistance with MV. In this study, a machine learning model, Convolutional Autoencoder (CAE) is developed to quantify the magnitude of SB effort using only bedside MV airway pressure and flow waveform. MethodThe CAE model was trained using 12,170,655 simulated SB flow and normal flow data (NB). The paired SB and NB flow data were simulated using a Gaussian Effort Model (GEM) with 5 basis functions. When the CAE model is given a SB flow input, it is capable of predicting a corresponding NB flow for the SB flow input. The magnitude of SB effort (SBEMag) is then quantified as the difference between the SB and NB flows. The CAE model was used to evaluate the SBEMag of 9 pressure control/ support datasets. Results were validated using a mean squared error (MSE) fitting between clinical and training SB flows. ResultsThe CAE model was able to produce NB flows from the clinical SB flows with the median SBEMag of the 9 datasets being 25.39% [IQR: 21.87–25.57%]. The absolute error in SBEMag using MSE validation yields a median of 4.77% [IQR: 3.77–8.56%] amongst the cohort. This shows the ability of the GEM to capture the intrinsic details present in SB flow waveforms. Analysis also shows both intra-patient and inter-patient variability in SBEMag. ConclusionA Convolutional Autoencoder model was developed with simulated SB and NB flow data and is capable of quantifying the magnitude of patient spontaneous breathing effort. This provides potential application for real-time monitoring of patient respiratory drive for better management of patient-ventilator interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.