Abstract

PurposeMyocardial blood flow (MBF) estimation with 82Rubidium (82Rb) positron emission tomography (PET) is technically difficult because of the high spillover between regions of interest, especially due to the long positron range. We sought to develop a new algorithm to reduce the spillover in image-derived blood activity curves, using non-uniform weighted least-squares fitting. MethodsFourteen volunteers underwent imaging with both 3-dimensional (3D) 82Rb and 15O-water PET at rest and during pharmacological stress. Whole left ventricular (LV) 82Rb MBF was estimated using a one-compartment model, including a myocardium-to-blood spillover correction to estimate the corresponding blood input function Ca(t)whole. Regional K1 values were calculated using this uniform global input function, which simplifies equations and enables robust estimation of MBF. To assess the robustness of the modified algorithm, inter-operator repeatability of 3D 82Rb MBF was compared with a previously established method. ResultsWhole LV correlation of 82Rb MBF with 15O-water MBF was better (P < .01) with the modified spillover correction method (r = 0.92 vs r = 0.60). The modified method also yielded significantly improved inter-operator repeatability of regional MBF quantification (r = 0.89) versus the established method (r = 0.82) (P < .01). ConclusionA uniform global input function can suppress LV spillover into the image-derived blood input function, resulting in improved precision for MBF quantification with 3D 82Rb PET.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.