Abstract

Redox-induced orientation changes (or monolayer thickness changes) of self-assembled monolayers (SAMs) of 11-ferrocenylundecanethiol (FcC11SH) were quantified by the electrochemical surface plasmon resonance (EC-SPR). EC-SPR enables one to determine the collective effect of the monolayer thickness and refractive index changes resulted from the oxidation of ferrocene (Fc) to ferrocenium. To measure the monolayer volume variation associated with the molecular orientation change, an electrochemical quartz crystal microbalance (EQCM) was used to determine the total number of water molecules accompanying with the ion-pairing between the ferrocenium cation and the counteranion in the solution. With the maximum void space within the SAM for water incorporation known, the Lorentz-Lorenz equation was used to correlate the SPR dip shift to the maximum monolayer thickness variation. In the presence of 0.1 M HClO4 and 0.1 M HNO3, the monolayer thickness changes were deduced to be 0.09 and 0.08 nm, respectively. Thus, upon electrochemical oxidation of the FcC11SH SAM, the swinging of the alkyl chain farther away from the electrode (Ye et al., Langmuir, 1997, 13, 3157) or the rotation or flipping of the Fc cyclopentyldiene ring around the bond between the Fc group and the alkyl chain (Viana et al., J. Electroanal. Chem. 2001, 500, 290) can both lead to the observed film thickness changes, with the former probably being the more important process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.