Abstract

Single-molecule tracking combined with fluorescence lifetime analysis can be a powerful tool for direct molecular quantification in solution. However, it is not clear what molecular identification accuracy and how many single-molecule tracks are required to achieve an accurate quantification of rare molecular species. Here we carry out calculations to answer these questions, based on experimentally obtained single-molecule lifetime data and an unbiased ratio estimator. Our results indicate that even at the molecular identification accuracy of 0.99999, 1.8 million tracks are still required in order to achieve 95% confidence level in rare-species quantification with relative error less than ±5%. Our work highlights the fundamental challenges that we are facing in accurate single-molecule identification and quantification without amplification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.