Abstract

Protein-coated nanoparticles have been used in many studies, including those related to drug delivery, disease diagnosis, therapeutics, and bioassays. The number and density of proteins on the particles’ surface are important parameters that need to be calculable in most applications. While quantification methods for two-dimensional surface-bound proteins are commonly found, only a few methods for the quantification of proteins on three-dimensional surfaces such as nanoparticles have been reported. In this paper, we report on a new method of quantifying proteins on nanoparticles using matrix assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS). In this method, the nanoparticle-bound proteins are digested by trypsin and the resulting peptide fragments are analyzed by MALDI-TOF MS after the addition of an isotope-labeled internal standard (IS) which has the same sequence as a reference peptide of the surface-bound protein. Comparing the mass intensities between the reference peptide and the IS allows the absolute quantification of proteins on nanoparticles, because they have the same molecular milieu. As a model system, gold nanoparticles were examined using bovine serum albumin (BSA) as a coating protein. We believe that our strategy will be a useful tool that can provide researchers with quantitative information about the proteins on surfaces of three-dimensional materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call