Abstract

Polyimide was irradiated with a XeCl excimer laser (308 nm) and the ablated area and its surrounding were studied using transmission electron microscopy (TEM) and confocal Raman microscopy. Ring-like structures surrounding the ablated area were detected at all fluences. At fluences lower than 250 mJ/cm−2 the formation of conical structures was observed within the irradiated area. The width of the rings increases with fluence and only slightly with the number of pulses. The rings consist mainly of polycrystalline carbon with a relatively high bond angle disorder, with thickness decreasing radially from the crater edge. The thickness of the deposited carbon was determined from TEM analysis and calculated from the intensity ratios of Raman bands assigned to carbon and polyimide using a two layer model. Comparing the two results an estimate of the absorption coefficient of the deposited carbon could be obtained. On top of the cone structures carbon was detected with a higher degree of crystallinity and lower bond angle disorder as compared to the material deposited outside the crater. With energy dispersive x-ray analysis, calcium could be detected on top of the cones. Therefore, it can be assumed that the Ca impurities are causing the cone structures. The higher crystallinity of the carbon inside the irradiated area is probably due to a tempering-like process on top of the Ca compound which is heated upon laser irradiation or to a mixture of growth mechanisms similar to the ones suggested for the formation of carbon nanotubes on metal particles and carbon nanohorns without metal catalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call