Abstract

A decrease in the levels of dopamine (DA)─a key catecholamine biomarker for major depressive disorder─highlights the need for quantitative analysis of biological fluids to aid in the early diagnosis of diverse neuropsychiatric disorders. This study developed silicon nanowires enriched with silver nanoparticles to serve as a surface-enhanced Raman scattering (SERS) substrate to enable precise and sensitive quantification of blood plasma DA levels in humans. The silver-enriched silicon nanowires (SiNWs@Ag) yielded flower-like assemblies with densely populated SERS "hot spots," allowing sensitive DA detection. By correlating DA concentration with Raman intensity at 1156 cm-1, the plasma DA levels in treatment-naïve patients with major depression (n = 18) were 2 orders of magnitude lower than those in healthy controls (n = 18) (6.56 × 10-10 M vs 1.43 × 10-8 M). The plasma DA concentrations differed significantly between the two groups (two-tailed p = 5.77×10-7), highlighting a distinct demarcation between depression patients and healthy controls. Furthermore, the SiNWs@Ag substrate effectively differentiated between DA and norepinephrine (NE) in mixtures at nanomolar levels, demonstrating its selective detection capability. This study represents the first report on the quantitative detection of DA levels in human blood samples from individuals with major depression using an SERS technique, emphasizing its potential clinical utility in the evaluation and diagnosis of neuropsychiatric disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.