Abstract
Plant cells are directly connected by plasmodesmata that form channels through the cell wall and enable the intercellular movement of cytosolic solutes, membrane lipids and signalling molecules. Transport through plasmodesmata is regulated not only by a fixed size-exclusion limit, but also by physiological and pathological adaptation. To understand plant cell communication, carbon allocation and pathogen attack, the capacities for a specific molecule to pass a specific cell-wall interface is an essential parameter. So far, the degree of cell coupling was derived from frequency and diameter of plasmodesmata in relevant tissues as assessed by electron microscopy of fixed material. However, plasmodesmata functionality and capacity can only be determined in live material, not from electron microscopy, which is static and prone to fixation artefacts. Plasmodesmata functionality was a few times assessed using fluorescent tracers with diffusion properties similar to cytosolic solutes. Here, we used three-dimensional photoactivation microscopy to quantify plasmodesmata-mediated cell-wall permeability between living Cucurbita maxima leaf mesophyll cells with caged fluorescein as tracer. For the first time, all necessary functional and anatomical data were gathered for each individual cell from three-dimensional time series. This approach utilized a confocal microscope equipped with resonant scanner, which provides the high acquisition speed necessary to record optical sections of whole cells and offers time resolution high enough to follow the kinetics of photoactivation. The results were compared to two-dimensional measurements, which are shown to give a good estimate of cell coupling adequate for homogenous tissues. The two-dimensional approach is limited whenever tissues interfaces are studied that couple different cell types with diverse cell geometries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.