Abstract

BackgroundEchocardiography is a key investigation in the management of patients on extracorporeal membrane oxygenation (ECMO). However, echocardiographic images are often non-diagnostic in this patient population. Contrast-enhanced echocardiography may overcome many of these limitations but contrast microspheres are hydrodynamically labile structures prone to destruction from shear forces and turbulent flow, which may exist within an ECMO circuit. This study sought to evaluate microsphere destruction (utilising signal intensity as a marker of contrast concentration) during transit through an ECMO circuit.MethodsActivated Definity® contrast was diluted to 50 ml with normal saline and infused into a crystalloid primed ex vivo ECMO with a Quadrox oxygenator at 150 ml/h. Imaging was performed on pre- and post-pump head/oxygenator sections of the circuit using a Philips iE33 scanner and S5-1 transducer. Five-millimetre regions of interest were placed in the centre of the ultrasound field. Average signal intensity (decibels) was calculated at speeds of 1000, 2000, 3000 and 4000 rpm and then repeated with an infusion rate of 300 ml/h. The oxygenator was then spliced out of the circuit and the measures repeated.ResultsThere was a significant reduction in contrast concentration during passage through the ECMO circuit at all speeds (with higher pump head speeds resulting in greater microsphere destruction). In a circuit with an oxygenator, relative decrease in signal intensity was 21.4 versus 5.2 % without an oxygenator. There was significant destruction of contrast microspheres during passage through the ECMO circuit at all pump head speeds. An oxygenator contributed to microsphere destruction at a significantly greater level than the pump head alone. There was no significant difference in mean signal intensity reduction in the circuit between an infusion of 150 or 300 ml/h (3.5 ± 3.2 versus 3.6 ± 2.5 dB, respectively, p = 0.79).ConclusionsFlow of contrast through an ECMO circuit results in significant destruction of microspheres. Circuits with an oxygenator result in significantly greater levels of contrast destruction than by the pump head alone. Clinicians should be cognisant of the relationship between ECMO circuit configurations, pump head speed and contrast destruction when performing a contrast-enhanced echocardiogram in patients supported with ECMO.Electronic supplementary materialThe online version of this article (doi:10.1186/s40635-016-0079-0) contains supplementary material, which is available to authorized users.

Highlights

  • Echocardiography is a key investigation in the management of patients on extracorporeal membrane oxygenation (ECMO)

  • Clinicians should be cognisant of the relationship between ECMO circuit configurations, pump head speed and contrast destruction when performing a contrast-enhanced echocardiogram in patients supported with ECMO

  • There was a significant reduction in contrast concentration during passage through the ECMO circuit at all speeds

Read more

Summary

Introduction

Echocardiography is a key investigation in the management of patients on extracorporeal membrane oxygenation (ECMO). Contrast-enhanced echocardiography may overcome many of these limitations but contrast microspheres are hydrodynamically labile structures prone to destruction from shear forces and turbulent flow, which may exist within an ECMO circuit. Provision of ECMO usually takes place within a critical care complex and assessment of these patients using transthoracic echocardiography can be challenging due to sub-optimal image quality in up to 25 % of patients. The administration of a contrast agent during echocardiography can help minimise these non-diagnostic echocardiograms [9,10,11] These contrast microspheres are hydrodynamically labile structures and are prone to destruction from shear forces and turbulent flow, which exist within an ECMO circuit. The aim of this study was to quantify the degree of microsphere destruction, utilising signal intensity as a marker of contrast concentration, during transit through an ex vivo ECMO circuit using quantitative echocardiography. A secondary aim was to assess the impact of an oxygenator on bubble destruction within an ECMO circuit

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.