Abstract

Sediment particle shape and microtexture are key parameters utilized for characterizing sediment transport and weathering (both physical and chemical) processes, which in turn are governed by environmental conditions such as climate. Assessing particle shape often involves either qualitative descriptors or time-consuming measurements of shape parameters by a human operator. This study employs a state-of-the-art, quantitative shape analysis instrument known as the “Morphologi G3” from Malvern Instruments, an automated microscope system capable of determining quantitative shape parameters via static image analysis of > 1000 particles in less than two hours. This instrument captures 2D projected images of particles and provides information on grain size measurements such as circle-equivalent diameter, length, width, perimeter, and area, as well as shape parameters such as circularity and convexity. As a case study, we conducted analyses on mud- and sand-sized particles collected from fluvial/alluvial systems of end-member climates to assess variations in sediment particle morphology potentially related to climate and/or transport distance and processes. Sediment samples were collected from fluvial systems in four contrasting climates: hot-arid (southeastern California, USA), hot-humid (eastern Puerto Rico), glacial-arid (proglacial stream of the Dry Valleys, Antarctica), and glacial-humid (Austerdalen proglacial stream, Norway). Results provide quantitative constraints on shape differences that relate to climate and transport, even for very fine-grained sand and mud size fractions. Comparison of the circularity of sediment particles from the four end-member climates indicates that the very fine sand fractions reflect differential physical abrasion and transport processes, whereas the morphology of the mud fraction seemingly imprints chemical weathering processes. We conclude that this new technique has great potential to further document impacts of climate on particle shape with applications to both modern and deep-time depositional systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.