Abstract

Compound specific stable isotope analysis (CSIA) has been established as a viable tool for proving, characterizing and assessing degradation of organic pollutants within contaminated aquifers. The fractionation of stable isotopes during contaminant degradation leads to observable shifts in stable isotope ratios which can serve as an indicator for in situ pollutant degradation and allow for a quantitative assessment by means of the so-called Rayleigh (distillation) equation. This review highlights the recent developments of the Rayleigh equation approach for quantifying in situ degradation of organic pollutants in contaminated aquifers. The advantages and limitations of the Rayleigh equation approach are discussed and suggestions for improvements are given. Concepts are provided to estimate the uncertainty due to errors or variability of input parameters and how to deal with such uncertainty. Moreover, the applicability of the Rayleigh equation approach is evaluated regarding the heterogeneity and complexity of groundwater systems. For such systems, the review discusses the relevance of non-destructive processes, which affect the concentration (e.g., dispersive mixing) and potentially also the stable isotope ratio of contaminants (e.g., sorption, volatilization), and the resulting implications for the Rayleigh equation approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.