Abstract

Quantification of neurodegeneration in animal models is typically assessed by time-consuming and observer-dependent immunocytochemistry. This study aimed to investigate if newly developed ELISA techniques could provide an observer-independent, cost-effective and time-saving tool for this purpose. Neurofilament heavy chain (NfH SM135 ), astrocytic glial fibrillary acidic protein (GFAP), S100B and ferritin, markers of axonal loss, gliosis, astrocyte activation and microglial activation, respectively, were quantified in the spinal cord homogenates of mice with chronic relapsing experimental allergic encephalomyelitis (CREAE, n=8) and controls ( n=7). Levels of GFAP were found to be threefold elevated in CREAE (13 ng/mg protein) when compared to control animals (4.5 ng/mg protein, p<0.001). The inverse was observed for NfH SM135 (21 ng/mg protein vs. 63 ng/mg protein, p<0.001), ferritin (542 ng/mg protein vs. 858 ng/mg protein, p<0.001) and S100B (786 ng/mg protein vs. 2080 ng/mg protein, N.S.). These findings were confirmed by immunocytochemistry, which demonstrated intense staining for GFAP and decreased staining for NfH SM135 in CREAE compared to control animals. These findings indicate that axonal loss and gliosis can be estimated biochemically using the newly developed ELISA assays for NfH SM135 and GFAP. These assays may facilitate the quantification of pathological features involved in neurodegeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.