Abstract

The nucleus accumbens (Acb) receives convergent glutamatergic inputs from the prefrontal cortex (PFC), central thalamus, basolateral amygdala and the ventral subiculum of the hippocampus. The principal neurons of the nucleus accumbens are modulated by specific sets of convergent afferent inputs, the local circuit neurons also receive a substantial number of glutamatergic inputs, but the full complement of these has yet to be established. The aim of these studies was to define characteristics of the different glutamatergic afferent inputs to the nucleus accumbens that would aid their identification. To enable the characterisation of the glutamatergic inputs to nucleus accumbens neurons we first labelled the four main glutamatergic sources of afferent input to the accumbens with the anterograde tracer biotinylated dextran amine (BDA). Using an unbiased systematic sampling method, the morphological characteristics of their synaptic boutons were measured and assessed at the electron microscopic level. From the criteria assessed, a comparison of the four afferent sources was made, characteristics such as bouton size and vesicle density had significantly different population means, however, the only characteristic that allowed discrimination between the four major glutamatergic afferent to the nucleus accumbens was that of vesicle size. The vesicles in boutons from amygdala were larger than the subiculum which, in turn, were larger than the prefrontal cortex, the thalamus were the smallest in size. The methods used also allow a comparison of the relative frequency of different sized postsynaptic structures targeted, the prefrontal cortex almost exclusively targeted spines whereas the thalamus and the subiculum, in addition to spines, targeted proximal and distal dendrites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.