Abstract

This paper presents a mathematical model able to quantify mixing efficiency in Supercritical Water Hydrothermal Reactors (SWHR) for the production of different types of nanoparticles. In fact, mixing plays a crucial role in determining the final particle size distribution and therefore the final product quality. In this work, mixing of supercritical water streams is studied with Computational Fluid Dynamics (CFD) by using the Reynolds Averaged Navier Stokes (RANS) approach coupled with an equation of state and a micromixing model, to take into account the effect of molecular mixing. The performance of the model is investigated in three different scenarios, corresponding to very different values of the Richardson number and very different mixer configurations. The main results show how mixing can be quantified by means of a global mixing time and how turbulence enhances the process, leading to better final product characteristics, especially in terms of lower mean particle size and narrower particle size distributions. This confirms previous research on this topic, highlighting the fact that both the mean particle size and the particle size distribution are strongly dependent on the mixing features of the SWHR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.