Abstract

Determination of the magnitude of body iron stores helps to identify individuals at risk of iron-induced organ damage in Thalassemia patients. The most direct clinical method of measuring liver iron concentration (LIC) is through chemical analysis of needle biopsy specimens. Here we present a noninvasive method for the measurement of LIC in vivo using magnetic resonance imaging (MRI). Twenty-three pediatric Thalassemia major patients undergoing bone marrow transplantation at our centre were studied. All 23 patients had MRI T2* and R2* decay time for evaluation of LIC on a 1.5Tesla MRI system followed by liver tissue biopsy for the assessment of iron concentration using an atomic absorption spectrometry. Simultaneously, serum ferritin levels were measured by enzymatic assay. We have correlated biopsy LIC with liver T2* and serum ferritin values with liver R2*. Of the 23 patients 11 were males, the mean age was 8.3 ± 3.7years. The study results showed a significant correlation between biopsy LIC and liver T2* MRI (r = 0.768; p < 0.001). Also, there was a significant correlation between serum ferritin levels and liver R2* MRI (r = 0.5647; p < 0.01). Two patients had high variance in serum ferritin levels (2100 and 4100mg/g) while their LIC was around 24mg/g, whereas the difference was not seen in T2* MRI. Hence, the liver T2* MRI is a better modality for assessing LIC. Serum ferritin is less reliable than quantitative MRI. The liver T2* MRI is a safe, reliable, feasible and cost-effective method compared to liver tissue biopsy for LIC assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call