Abstract
The existing techniques for lignosulfonate (LS) in humate fertilizers lack selectivity to humic substances (HS) as the main component; they involve labor- and time-consuming sample preparation to separate the components at the level of detectable LS concentrations. The procedure based on attenuated total reflectance (ATR) FTIR spectroscopy with simple sample preparation for directly quantifying lignosulfonates in aqueous solutions and lignosulfonates and HS in aqueous solutions of preparations based on HS of coal origin (Sigma Aldrich, Powhumus, and Life Force) was developed. Lignosulfonate quantification is possible by exploiting the bands at 1266, 1192, 1093, and 1042 cm−1 with limits of detection of 0.4–2 g/L. Quantifying LS in a mixture with humates includes centrifugation of prepared solutions to separate interfering silicate impurities. LS quantification in the range of 10–100 g/L against HS (up to a 2-fold excess) with an error of up to 5% is possible based on the spectral absorptions at 1093 and 1042 cm−1. Simultaneous quantification of humate in the mixture with an error of up to 10% is possible by exploiting the bands at 1570 and 1383 cm−1 (carboxylates). The study shows the possibility of determining lignosulfonate against an HS background several times higher than lignosulfonate. The developed technique is applicable for analyzing fertilizers of simple composition and quality control of pure humates used for plant growth. Obtaining the most accurate results needs calibration solutions from the same brands that make up the test mixture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.